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Summary

The Return Data Delay technique which requires knowledge of

spacecraft range is commonly used for correlating a spacecraft

clock against a ground time standard when millisecond accuracy is

required. An analysis is presented that allows using the user

spacecraft clock calibration system (USCCS) to correlate a

spacecraft clock to better than one microsecond accuracy. The

basic USCCS algorithm has been simplified and it is shown to

results in about one microsecond accuracy without requiring

orbital information. By considering the relative motion of the

user satellite, the TDRS and the earth station about the center

of the earth, a correction of almost two orders of magnitude can

be made. Such accuracy is required for scientific investigations

that require correlating coincident radiation or particle

detection with a remote laboratory.

Backqround

An accurate absolute time reference is required on

scientific spacecraft for operational purposes and for

correlating scientific data. Typical accuracy required for many

satellites has been of the order of one millisecond; examples are

ERBS, SMM, SME, UARS, EUVE, LANDSAT and HST. This accuracy is

obtained by reading the spacecraft clock (or oscillator count

values) simultaneous with a particular bit edge in the telemetry.

As the telemetry is received on the ground an absolute time

reference is recorded periodically for selected bits in the

telemetry. The absolute ground receipt time of the bit edge that

was simultaneous with the onboard clock reading can thus be

determined. Orbital knowledge and equipment time delays then

allow the calculation of the time the particular bit was created

on board and, hence, the time the spacecraft clock was read based

on the ground clock. The reading on the spacecraft clock is sent
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to the ground in a later portion of the telemetry and serves as a

clock calibration by Comparing it with the earth based standard.

The main limitation in this method, which is referred tO as

the return data delay (RDD) or return channel telemetry delay

(RCTD), is accurate knowledge of the spacecraft range (and thus

the space propagator delay) from the ground receiving station.

The calculations are done after a 9ass with the tracking, data

and relay satellite system (TDRSS) and uses predicted orbital

positions. The results are extremely sensitive to the quality of

the orbital data but can be accurate to about 3 _s with respect

to the ground time reference (atomic clock at the NASA Ground

Terminal (NGT)). The RDD method is an open loop method.

The CGRO project decided that because they required a i0 _s

clock setting accuracy, they would take advantage of the pulses

used in the TDRSS spacecraft ranging system and implement a

closed loop time correlation technique. This became the user

spacecraft clock calibration system (USCCS). GPS accuracy is

approximately l_s and today would be a competing technique.

Usinq Ranqe Pulses for Time Correlation

The standard ranging technique used in the TDRSS is a closed

loop method in which a pulse is sent from the TDRSS ground

station at White Sands New Mexico (WSGT) to a user via a TDRS and

then returned from the user to the WSGT via the same TDRS. The

signal propagation time which is used to determine the range to

the user is combined with the known TDRS orbit to determine the

user satellite orbit. The time accuracy between pulses is

specified to be ± 35 nanoseconds. For orbit determination,

doppler shift is also used.

The changes required to use the range pulses for timing

were:

I. to extract the range pulse from the spacecraft

transponder and use it to trigger a reading of the

spacecraft clock.

276



• to make an absolute time reading of the ground station

range pulse transmission time, and the range pulse

receipt time. For range purposes the delta between

these times were measured accurately but the absolute

times were not.

The range pulses, referred to as pseudo random (PN) code

epoch pulses, are the part of the PN spectrum spreading code used

in the TDRSS where there are 18 ones in a row. The code has a

length of 256 x 1023 chips (PN bits) generated at a rate of

approximately 3MHz. This results in a PN epoch pulse

approximately every 0.085 milliseconds (25500 Km at the speed of

light).

USCCS

The basic concept of the USCCS time correlation method is

extremely simple. When a PN epoch pulse is transmitted from the

ground the time is recorded, t I. It arrives at a spacecraft at

some time t 2 which is unknown. The spacecraft transponder

immediately retransmits the pulse to the ground where its arrival

time, t3, is recorded. Upon receipt of the pulse at the

spacecraft, the spacecraft's clock is read and the reading, t2_ ,

is transmitted to the ground along with other telemetry. On the

ground, t 2 is calculated from t I and t 3 and compared to t2,c for

calibration. The pulse arrival time at the spacecraft t 2 is

approximately half-way between t I and t 3.

tl+ t3 (i)
t2 - 2

When the signal propagation is viewed by an observer on the earth

it may seem that this in not an approximation• Proper analysis,

however, requires that the system be viewed from an inertial

reference frame.
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For a low earth orbiting (LEO) spacecraft at about a 400 Km

altitude, and a geosynchronous relay satellite, the round trip

distance traveled by an epoch pulse never varies by as much as

25500 Km, thus, there is no ambiguity between a transmitted epoch

and its corresponding return epoch. No orbital information is

needed, other than t I and t3, when correlating epochs to

approximately determine t 2.

Accuracy of the USCCS

The correction to half-way between t I and t 3 does not depend

on the LEO spacecraft velocity or the RF signal doppler shift.

The correction does depend on the LEO position and the fixed

quantities: earth rotational speed; geosynchronous relay

satellite rotational speed; relative position of earth station;

and, of course, the speed of light. The solution for t 2 with the

various motions is now examined and numerical values are given

for an example of orbits in the earth equatorial plane. It will

be shown that the required correction of up to about 1 _s is

asymmetric with the relative position of the LEO and relay

satellite and, thus, not related to the doppler which is almost

symmetric. The doppler can be used if orbital data is not

otherwise available to determine the longitudinal component of

the relative ground station, TDRS, and user position, which can

then be used to determine the required correction to Equation i.

Doppler

Consider the example of an object (user spacecraft) moving

away from a fixed observer at a constant velocity, Figure 2. The

frequency transmitted from the observer, fl, and received by the

observer, f3, are different (doppler), BUT the transmitted epoch

pulse is at the user at a point in time t2, which is exactly

half-way between when it leaves the observer, t I, and returns to

the observer, t 3. Note that the relative velocity, v, between
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observer and user spacecraft can be determined from the

observer's measurement of forward and return PN periods, T_ and

T3, respectively. For the USCCS, an observer at the WSGT on a

slowly rotating earth and a spacecraft in orbit, the above

concept is approximately true. For the constant velocity case

this equation is exactly true no matter how fast the user

spacecraft is moving.

A simulations viewing earth, TDRS, and user spacecraft

actual motion from a reference frame moving with the center of

the earth shows the correction term to Equation 1 to be less than

1 _s and, again, independent of the user spacecraft motion,

Figure 3. This analysis thus tells us that Equation 1 is

accurate to 1 Vs.

Special relativistic considerations are not included since

they are of the order v2/c 2 and which is about one nanosecond

(v2/c 2 x round trip time of 0.5 second).

Simulation

We observe the three bodies from above the north pole of the

earth with the earth center being the center of our reference

frame, and the TDRS and user orbit in the same plane, Figure 3.

Due to the earth's curved path (orbit) around the sun this also

is not a true inertial reference frame, but the remaining errors

are below our desired accuracy.

From Figure 3, we see that the forward path and return path

are not the same. Since the forward and return paths are

different, the signal that left the ground at t I and returned at

t 3 is not at the spacecraft exactly half-way in between. Since

the signal is at the user for only an instant of time at t2, it

may be intuitive that the difference in forward and return time

is independent of the user spacecraft velocity. This is similar

to the constant velocity example given earlier.

The difference in forward and return travel time is due to

both the earth and TDRS motion. Clearly the TDRS motion during

the 0.25 second that the signal travels from the TDRS to user and
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back to TDRS causes a difference in forward and return travel

time. In addition, a more subtle effect is the difference

between the GT-to-TDRS and TDRS-to-GT travel time. As a signal

moves through space from the GT to TDRS-E, the TDRS is moving

away. Thus, the distance traveled by the signal is greater than

the instantaneous GT-to-TDRS distance. Similarly, as a signal

travels from TDRS-E to the GT, the GT moves toward the signal so

the distance traveled by the signal is less than the

instantaneous distance, since the TDRS and GT are always in

fixed relative positions, the forward travel time of one pulse is

the same as the forward travel time of the following pulse.

Similarly, the return travel time from TDRS to GT for successive

pulses is the same. For TDRS-E the forward time is .395 _s

longer than the return time. For TDRS-W the values are reversed.

We now consider the portion of the signal path between the

TDRS and the user. The computer simulation shows the signal

travel time from TDRS to the user to be a maximum of 0.466 _s

longer than the traqel time from the user to the TDRS. This

occurs when the angle between the TDRS and the user spacecraft is

approximately 90 ° , the LOS point. At AOS the values are reversed

because the user is approaching the TDRS and the TDRS-to-user

time is less than the user-to-TDRS portion. For a user in a

polar orbit, the effect is less.

The net effect of combining the GT-TDRS and TDRS-user

portions is such that for TDRS-E at LOS the forward travel time

is 0.86 _s longer than the return travel time. At AOS it is

about 0.072 _s less, Figure 4. For TDRS-W the conditions are

reversed.

As in the constant velocity example of Figure 2, the forward

and return PN periods T l and T 3 can be used to determine the

longitudinal component of the user's velocity, v. In the real

case the complete motion, as shown in Figure 3, must be taken

into account, but the results will be approximately equal to that

given by the equation for v in Figure 2.

The maximum doppler effect will cause the PN period at the

spacecraft to vary by about 2 _s from the period transmitted from
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the GT. Thus, the return PN period at the GT will be a maximum

of 4 _s different from the transmitted. Even though the PN

periods as measured at the GT reflect the longitudinal component

of the velocity of the user spacecraft, Figure 5, their magnitude

does not directly relate to the correction needed in the USCCS to

determine t 2. The values of T l and T 3 serve only to tell us where

the user is in his orbit relative to TDRS. The geometry of

Figure 3, the TDRS motion and earth rotation, must then be used

to calculate the sub-microsecond correction needed to obtain the

correct value of t 2. That is, T I and T 3 at a given time are used

to find v. Knowing v we can find the relative orbital angle

between TDRS and the user, Figure 5. Once the angle is known,

the difference between the forward and return travel time, t F -

tR, can be found from Figure 4 and used to find the correction

required for Equation i.

t2 t1+t3 tr-t R= + (2)
2 2

Correction Term

Using Figures 3, 4 and 5, we can model the correction term

tv - tR as follows. The user velocity as seen from TDRS (not

orbital velocity) varies approximately sinusoidally as

v - vusin
2 8c '

-i00 ° <= Or <= i00 ° (3)

where:

8 r is the relative angle between the TDRS and user

measured from earth center,

8 c is
r ucos -1 __

r r
, the relative angle at which the user

is moving directly toward or away from TDRS,

v. is the user's orbital speed.
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In terms of T I and T3, v is approximately

v r3-rl- C
TI+T3

(4)

Equation 3 is used to solve for _r

20c __v
8r -- __ sin -I

v u
(5)

where v is known in terms of T l and T 3 from Equation 4.

From Figure 4, the correction term t F - t R can be represented by

tF - tR = .4665 sin e x + .3945 _s (6)

Using Equation 2 with this correction yields about two orders of

magnitude correction over Equation i. T l and T 3 are sufficiently

slowly varying that T1(tl) and T3(t3) will suffice.

Conclusion

Exploring the physics of the USCCS for the CGRO because of a

problem that was found to be simply a misplacement of data in the

telemetry, lead to the previous analysis. After examining the

full signal path from an inertial point of view it became clear

that the basic formula, t 2 = (tl+t3)/2 , is accurate to 1 #s

without any further correction (except of course, equipment

delays). The analysis did show that greater accuracy,

approaching that of the TDRSS ranging system, is possible but

requires knowledge of the relative position of the user

spacecraft and ground station relative to the TDRS. Other

limitations in the system as currently implemented are that the

time tags are only resolved to 0.i #s; and, although sub

microsecond accuracy with respect to the ground station time

standard is possible, it is only kept within about 1 _s of UTC.
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Figure I. System Overview
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v = constant

T, = FWD PN period at GT

T= __ PN period at SC

T = RTN PN period atGT

X, = FWD PN wavelength at GT

= PN wavelength at SC

L, = RTN PN wavelength at GT

c = speed of light
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Figure 2. Signal Path For Object At Constant Velocity
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